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Multiport Scattering Matrix Measurement Using
a Reduced-Port Network Analyzer

Hsin-Chia Lu, Member, IEEE, and Tah-Hsiung Chu, Member, |IEEE

Abstract—A novel method for acquiring the scattering matrix of
an n-port network from measurements using a reduced-port net-
work analyzer isdeveloped. Thismethod can obtain the scattering
matrix of a nonreciprocal or reciprocal n-port network with the
use of a three- or two-port network analyzer. The formulation of
this method considers the imperfection of terminatorsused in the
measurement, and only two of the terminators are required to be
known. Experimental results from a four-port microstrip circuit
show good accuracy using the developed method.

Index Terms—Multiport  network, matrix

measurement.

scattering

I. INTRODUCTION

HE multiport scattering matrix measurement of an n-port
network may need to design a specia multiport network
analyzer [1], [2] or to use a two-port vector network analyzer
with all other (n — 2)-ports of the test network connected with
perfect terminators based on the definition of the scattering ma-
trix. The multiport network analyzer requires specific calibra-
tion methods, e.g., [2]{5]. On the other hand, the instruments
and calibration methods needed to measure a two-port scat-
tering matrix are well developed. Agilent 8510C and Anritsu
ME7808A are two typical two-port vector network analyzers
and the 16-term error model is the most general approach for
calibration [6]8]. In practice, the imperfect terminators must
be taken into consideration when using a two-port network an-
alyzer to measure an n-port network accurately. The rigorous
methods for solving the scattering matrix of amultiport network
using a two-port vector network analyzer with known termina
tors were described in [9]{12]. A multiport network analyzer
using a two-port network analyzer with a calibration method
was given in [13]. It uses the method proposed in [9] to recon-
struct the n-port scattering matrix from two-port scattering ma-
trices. Currently, multiport vector analyzers are available, e.g.,
Adgilent N4446A consists of an 8720ES two-port vector network
analyzer and an N4418A four-port test set for port extension.
In[9], the n-port scattering matrix is cal culated directly from
C¥ sets of two-port scattering matrices. In [14], Lin and Ruan
proposed an approach from the port reduction point-of-view. As
aterminator isconnected to an n-port network, the order of mea-
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sured ports is reduced by one. With their method, the n-port
scattering matrix can bereconstructed from n sets of thereduced
(n — 1)-port scattering matrix by connecting » known termina
torsto each port one at atime. This port reduction process can
be continued to reduce the port order, and the resulting minimal
reduced port order is three. With the idea of reconstructing an
n-port scattering matrix from (n — 1)-port scattering matrices,
two-port reduction methods (PRMs) are proposed in [15]. They
are caled type-l and type-11 PRMs. Only three terminators are
required in each step of port reduction in both methods, and the
order of measured ports can be reduced to two for both recip-
rocal and nonreciprocal networks.

In this paper, we present a new formulation of the PRM,
called atype-1ll PRM, for solving the n-port scattering matrix
from n setsof thereduced (n — 1)-port scattering matrix by con-
necting »n terminators to each port one at a time. The minimal
order of measured ports can be reduced to two for a reciprocal
n-port network. In addition, only two of the n terminators are
reguired to be known instead of » in [9] or [14].

In the following sections, the basic formulation of the devel-
oped type-111 PRM is described in Section I1. Experimental re-
sults of four-port reciprocal and nonreciprocal circuitsare given
in Section 111. The measured results are verified and compared
with those measured with the assumption of using perfect ter-
mination. The accuracy of experimental resultsisalso analyzed.
Finally, aconclusion is given in Section IV.

Il. FORMULATION

For an n-port network, when a terminator with a reflection
coefficient of 'y is connected at the kth port, the relationship
between Sfj‘ ) of this reduced (n — 1)-port network and S;; of
the n-port network is given as
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In (1), the port numbering is the same for the n-port network
and the (n — 1)-port network. This equation means that there
areatotal of n (n — 1)” values of S{*’ to be measured.

In the following, we will first present the formulation for di-
agonal elements in the scattering matrix of an n-port network,
and then derive the formulation for off-diagonal elements.

A. Diagonal Elements
From (1), the ¢th diagonal element can be written as
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Asgiven in [14], the matrix equation to relate the diagonal ele-
ments of an n-port scattering matrix and the elements of reduced
(n — 1)-port scattering matricesis

[Rnxn] [Sd] = [Sr] 3

with (4)—6), shown at the bottom of this page, for n» > 3.1In
(3), [Rnxn] and [S,] are matrices related to the reduced (n —
1)-port scattering parameters and the reflection coefficients of
terminators used, whereas [.S,] contains the diagonal elements
to be solved.

In Appendix A, the determinant of [R, ] is proven to be
zero. Thismeansthe elements of .S;; in (4) cannot be solved ex-
plicitly, but can be expressed in a polynomia form in terms of
oneelement, suchas S1;. Theequationsto solve Sy aregivenin
the following derivation of the formulation for solving off-diag-
onal elementsof S;;. Inaddition, det [R,,«,,] = 0 providesare-
lationship between the S;;’ sof (n — 1)-port networks and there-
flection coefficients of all terminators. One can then utilize this
relation in the following two ways. Oneisto verify the measure-
ment consistency by calculating det [R,, x| with known values
of S;;’sand I';’'s. The determinate of (6) should be closeto zero
if al the values are correct. Alternately, one can use this equa-
tion to reduce the number of terminators that must be known in
the measurement. It is proven in Appendix B that only two of
the terminators used to reduce the measured ports are required
to be known instead of n, asin [9] or [14]. Thisthen relaxesthe
measurement requirements.

B. Off-Diagonal Elements

Asaterminator is connected at the jth port, (2) can bewritten
as

(s - 50) <ri - Sj]) = 5,51, )

J
By substituting (7) into (10) in [14] given by
S](»i)si,j + Si(j)ij, = S](»i)Si(j) + 5,55

- (S(k) - Sn‘) (Sff) - Sjj) ;
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one can obtain

€]
(k) (k) _ (k) o) S (k) o(k)
85081 +8:;7 55 = 557555 +—Fj — 55 5y

r 1 * o)

9
As described in Section I1-A, al the diagona elements can be
expressed in terms of Sy; (or designated as ¢ in the following
for simplicity). The right-hand side of (9) is then a polynomial
of ¢ with the order of one.
For n > 4, adifferent port A that is different from ¢, 7, and k&
can be taken and (9) becomes
)
S 5+50055 = S0 s+ SF— —5

2
J

1 ) _ o)

+<Sjj _F_J> Sii+ (Sii —S;i ) Sy

(10)

From (9) and (10), one can then express the off-diagona ele-

ments .S;; and S;; intermsof ¢. In other words, .S5;; and S;; are

polynomials of ¢ with the order of one. Let

Siu=fi(t) Sj; = folt) Sy = fs(t)
then (7) becomes

(s9 - n) (Fi - fz(t)> = BOAG  (12)

whichisasecond-order polynomial equation of £. Two solutions
of ¢ (or S11) can be found. Ast is solved, al the diagona and
off-diagonal elements can be calculated from (11).

Note there are two possible solutions of S;; for the two dif-
ferent values of ¢. To determine the correct value of ¢, one can
substitute the resulting values into

A=89 -5, —

1)
S

S = fa(t) (12)

1= 8505
The correct value of ¢ then gives avery small value of A based
on (1).

The derivation of the PRM formulation given above by re-
ducing the order of n portsto be n — 1 is valid for a nonre-

(13)

t,j=12,...m i#j5 4 J7#k ciproca network in general. One can repeat this port reduction
(8) processto reducethe measured portsto aminimal order of three,
[Sa] = [T'1S11 T'2892 Iy Son ] 4
1S:] = [1152 — 15l 1,88 — 1,859 s 1,587 ©)
and
[1-T,88) — (1—r15§?) 0 0 0 ]
0 1-T559 - (1—PQS§§>) 0 0
0 0 1-T,8%® 0 0
[Rnxn]: " (6)
0 0 0 1-T,80 D _ (1—rn,1sff_>1 n_l)
1 n
| 1-T,55) 0 0 0 - (1—F15§1))
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Fig. 1. Circuit layouts of: (&) reciprocal four-port network (or “R” network)
and (b) nonreciprocal four-port network (or “NR” network).

asgivenin[14]. In other words, the n-port scattering matrix can
be reconstructed from the measurement of terminated three-port
networks. In addition, the terminators used to reduce the mea-
sured ports can be partially known. In the following, we will
show that, for areciprocal network, the measured ports can be
further reduced to be two.

C. Reciprocal Network

For areciproca network
k k
By introducing (14) into (9), it becomes

s\
T,

J

Ko _ ok)? (k) o (k)
2571j Sij _Sij + =S Sjj

# 1 ® o)
+ <Sjj - E) Si+ (s -59) s (19

which means S;; can be expressed as apolynomial of ¢ with the
order of one. Therefore, by letting S;; = f5(¢) and substituting
itinto (7), it becomes a second-order polynomial equation of ¢.
Similarly, one can solve the correct value of ¢ and reconstruct
the n-port scattering matrix using the same procedure as in the
nonreciprocal case.

For areciproca network, one can find that all formulations
given above are valid until n isthree. This means that the min-
imal order of measured ports can be reduced to be two. In other
words, one can use the derived formulation of the type-111 PRM
to acquire the scattering matrix of a reciproca n-port network
using a two-port network analyzer.
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Network SUN Ultra 1
Aanlyzer Workstation
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Fig. 2. Measurement arrangement of afour-port network (DUT) with its ports
1 and 2 connected to an Agilent 8510C.

TABLE |
PORT DESCRIPTION OF THE SCATTERING MATRIX IN THE PRM PROCESS
Ports of resulting | Ports of intermediate| Ports of measured ni:::zrzgi\cntgilg’ "
four-port S-matrix | three-port S-matrix | two-port S-matrix S .
-matrix
12 11 12_11
123 1 13 11 13 11
23 11 23 11
12 11 -
124_1 14 11 14 11
24 11 24 11
1234 KT =
134 1 14 11 -
34 11 34 11
23 11 -
2341 24 11 e
34 11 e

I1l. EXPERIMENTS AND VERIFICATION

The experiments using the developed type-l1ll PRM con-
tain two parts. experiment 1 for a reciprocal network and
experiment 2 for a nonreciprocal network. In experiment 1,
the scattering matrix of a reciprocal four-port network is re-
constructed from the two-port measurements using an Agilent
8510C. In experiment 2, this reciprocal network is connected
with an isolator at one port to become a nonreciprocal four-port
network. As shown in Section |1-B, the scattering matrix of
this four-port network can be reconstructed from its terminated
three-port networks. Since the multiport vector network ana-
lyzer is not available in our laboratory, the three-port scattering
matrices for the PRM process of this nonreciprocal network are
calculated using the reconstructed four-port scattering matrix
of areciprocal network from experiment 1 and the measured
scattering matrices of the isolator and terminators used. The
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Fig. 3. Reconstructed results of: (a) input, (b) coupled path, and (c) direct path characteristics of the “R” network.

experiment 2 results are finally verified with the measured
two-port scattering matrices of the terminated four-port non-
reciprocal network.

A. Measurement Arrangement

Fig. 1(a) and (b) shows the reciproca four-port network
(or “R” network) and the nonreciprocal four-port network (or
“NR” network) used in the experiments. The “R” network is
a four-port microstrip circuit with a 50-mil-thick RT/Duroid
6006 substrate. By connecting an isolator (Narda |0S-4080) at
port 2, as shown in Fig. 1(b), it becomes a four-port nonrecip-
rocal network.

A typical two-port scattering matrix measurement arrange-
ment by terminating two selected ports of the device-under-test
(DUT) isillustrated in Fig. 2. In the measurement, an Agilent
8510C is calibrated with the use of full two-port calibration and
an adapter remova technique. A SUN Ultra 1 workstation is
linked through an |EEE-488 interface for data recording and
PRM calculation. In Fig. 2, an Agilent 8510C is shown con-
nected to ports 1 and 2 of the DUT, whereas ports 3 and 4 are

connected with two terminators. Terminator 1 is a 6-dB attenu-
ator with ashort load for the PRM measurement. Terminator 2is
a50-2 load for the PRM verification. Note that the pair of ports
1 and 2 connected to an Agilent 8510C is only onetypical mea-
surement arrangement. The actual measured ports of the DUT
are discussed in the following.

B. DUT Measurement Ports

Table | illustrates the port arrangement of the scattering ma-
trix at different orders in the PRM process. The first column
is the ports of the DUT, i.e., 1234 represents ports 1-4 of the
resulting DUT four-port scattering matrix. The ports of inter-
mediate three-port scattering matrices required to reconstruct
thisfour-port scattering matrix are shown in the second column.
Thetype of terminator connected isalso given. For example, the
second element 123 1 represents a three-port scattering matrix
of ports 1-3 with terminator 1 connected at port 4.

The third column describes the ports and terminators for
the two-port scattering matrix measurement. Similarly, the
first two digits represent the measured ports connected to an
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Fig. 4. Comparison of: () 51 and (b) S21 of the “NR” network with .S;; from the four-port scattering matrix reconstructed by the PRM, M .S;; from the
measured two-port scattering matrix, and C'S.;; from the calculated two-port scattering matrix.

Agilent 8510C and the following two digits represent the type
of terminators connected. The actual measured ports are then
given in the last column. Aslisted in Table |, there is a total of
six sets of the two-port scattering matrix to be measured for the
PRM calculation in order to reconstruct the four-port scattering
matrix of the “R” network given in Fig. 1(a).

C. Experiment 1

Asdescribed in Section |1, thefirst processin the PRM calcu-
lation of the “R” network isto solve the intermediate three-port
scattering matrices from the six measured sets of two-port scat-
tering matrices. The four-port scattering matrix is then recon-
structed from the four three-port scattering matrices, asgivenin
Table |. The measurement frequency range is 2 GHz~10 GHz.
Sincethe“R” network isreciprocal, there are only ten elements
of the four-port scattering matrix to be solved. The results are
shown in Fig. 3.

Fig. 3(a) shows the resulting four reflection coefficients of
S11, S22, 533, and S44, which are very closeto each other. Their

differences are due to the soldering and that four SMA connec-
torsare not identical. The scattering parameters for the coupled
paths Si2, Si3, S24, and Ss4 are shown in Fig. 3(b). Fig. 3(c)
gives the direct path characteristics of S14 and Sz3. Similarly,
these characteristics are very close, respectively, because the
“R” network is symmetrical.

In this experiment, the reflection coefficients of four
terminators used for each port are al given without using
det [R,xn] = 0 to solve them, as described in Appendix B.
Instead, det [R,,x,,] = 0 is used as a criterion to verify the
measurement consistency. For each two- to three-port scattering
matrix reconstruction, as in Table I, the value of det [R®] is
very low and within the range of —60 dB.

D. Experiment 2

As described in Section 11, the minimal order of the reduced
ports for the “NR” network is three. In this experiment, the
three-port scattering matrices required for the reconstruction of
the “NR” network are calculated using the results of the “R”
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(Continued.) Comparison of: () S12 and (d) S14 of the “NR” network with .S;; from the four-port scattering matrix reconstructed by the PRM, M S,

from the measured two-port scattering matrix, and C'S;; from the calculated two-port scattering matrix.

network in experiment 1 and the measured scattering matrices
of the isolator and terminators used. Based on the PRM formu-
lation for the nonreciprocal network developed in Section I,
the resulting four-port scattering matrix of this “NR” network
isshownin Fig. 4.

The reconstructed four-port scattering matrix is verified with
the measured two-port scattering matrices by connecting two
terminators 2 (50-€2 loads), as illustrated in Fig. 2. In addi-
tion, these two-port scattering matrices are calculated using the
four-port scattering matrix of the “NR” network with the mea-
sured reflection coefficients of 50-€2 loads. The reflection coef-
ficients of all four 50-€2 loads are approximately —20 dB. The
measured and calculated two-port scattering parameters (de-
noted as M S;; and C'S;;) are dso given in Fig. 4, and they are
shown to be identical. This shows that the reconstructed S, of
the “NR" network have good accuracy. In addition, a quantita-
tive discussion on the accuracy of reconstructed scattering pa-
rameters is given in Appendix C.

The measured port pair for A4.5;; is given on the top of each
figure. Note that not al M S;,’s are shown. For example, there

are three M S¢1’s with port pairs (1, 2), (1, 3), or (1, 4), as
measured with an Agilent 8510C. However, the difference be-
tween them is not noticeable, therefore, only M S;; from the
port pair (1, 3) isgiven in Fig. 4(a). The resultsin Fig. 4 show
that the measured results A/ S ; areidentical to calculated results
C'S;;. However, there are some discrepancies between M S,
and S;;. Thisisbecausethereflectionsfrom two imperfect 50-§2
terminators contaminate the DUT S;; in the measurement when
using a two-port vector network analyzer. In addition, the dis-
crepancy between M Sy4 and S14 isintherange of afew tenths
of decibels, whichisconsiderable smaller than those in the other
scattering parameters shown in Fig. 4. This can be explained by
the reflection from the terminator at port 2 being blocked by the
isolator, hence, only the reflection from the terminator at port 3
affects S14 through the coupled path. Since the coupling in the
direct path is much larger than that of the coupled path, the dis-
crepancy between M S1; and Sy inFig. 4(a) ismoreseverethan
that for M S14 and S14 in Fig. 4(d). The discussion on the accu-
racy comparison of thistype-111 PRM with atype-I and type-I|
PRM in [15] is given in Appendix D.
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IV. CONCLUSION

In this paper, a novel PRM (type-Ill PRM) has been devel-
oped to reconstruct the scattering matrix of amultiport network
from the measured reduced-port scattering matrices. The effects
of nonideal terminators are completely taken into consideration
in the derived formulation. The equation det [R,x,] = 0 to
relate the reflection coefficients of terminators and measured
scattering parameters is used as a criterion for verifying mea-
surement consistency. It can alternatively be used to reduce the
required number of known terminators to two. With the devel-
oped PRM, one can measure the scattering matrix of areciprocal
n-port network with a conventional two-port network analyzer.
For a nonreciprocal n-port network, the measured ports can be
reduced to the order of three.

APPENDIX

A. Proof of det [R,xn] =0

The following proof uses the induction method starting from
a3 x 3matrix [R®].

Step 1: Provedet [R®] = 0.

Let

1-T,5Y —(1—r15§§>) 0
| o ()
1-T555) 0 - (1-18?)
(A1)

1-T'355)

By substituting 5,57,3 givenin (2) into (A.1) and after proper ma-
nipulation, it can be shown that det [R®] = 0. In addition, by
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changing the subscripts and superscriptsin [R®)] tobei, j and
k as ‘ ’
1-1;88) - (1-1is?) 0

[R(?’)'} - 0 - (1—@»5}?)
1-T; 8% 0 _ (1—FiSff))
(A.2)

1-I;,59)

det |R®"| can also be shown equal to zero.

Note that [R®] has a similar form as [Rs,3] given in (6),
but they are not equal. The elementsin [R®] arefromthe (n —
1)-port scattering matrices, whereas the elements of [R5, 3] are
from the two-port scattering matrices. However, for an n-port
network, [R(M] = [Ryxn).

Step 20 Assuming det [RD)]
det [R®] = 0.

See (A.3), shown at the bottom of this page. Since
det |[R®"| = 0, the first row can be written as a linear
combination of the second and third rows.

Similarly, [R™)] is written as (A.4), shown at the bottom of
this page.

The last two rows can be rewritten into a new form by using
det R<3>”L = 0, then (A.4) becomes (A.5), shown at the
bottom of the following page, where ¢ is a constant. One can
express this determinant by extracting the last column to give
det [RM] = ¢ (1= T3S ) (-1 det [RED] = 0 since
det [R*~D] = 0. Therefore, based on steps 1 and 2 of the
induction method, det [R(™)] = det [R,,xn] = 0.

0, prove that

B. Proof of the Required Minimal Number of Known
Terminators to be Two

Without the loss of generality, two known terminators are
connected at ports 1 and 2 with their reflection coefficientsasI™y

1- Pk_15£1217 k-1 (1 - Flsillg_l)) 0
1— rkglg? 0 - (1 - 1“15:{'{))
[1-T,S8% - (1 — Flef)) 0 0 0 _
2 3
0 1-T38% - (1 — F25§z)) ah 0 0
. e®
R0 =] O ! oS ! ’ (A4)
0 0 0 1— FkSSZ—l) - (1 - kalslgi)l,k—l)
1ors® 0 0 0 - (1-1us)
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andT'>. Det [R™®] = 0 of (A.1) givesalinear equation with the
order of one for I's, therefore, I'; can be calculated. Similarly,
the reflection coefficients of other terminators can be cal cul ated
using det |R®)'| = 0 of (A.2) by properly selecting the ports
i, j, and k. Therefore, the minimal number of known termina-
torsis two.

C. Accuracy of Reconstructed Scattering Parameters

The accuracy of the reconstructed four-port scattering matrix
of the“NR” network isdiscussed in thefollowing by expressing
CSU and MSU asCSU = S“ + ST and MSU = SZ +
ST, where Sfj isthe actual scattering parameter of the “NR”
network. ST and ST, are the spurious components due to
the reflection from imperfect termination to C'S;; and M.S;;,
respectively. One can then use the difference of C'S;; and M S;;

to estimate the reconstructed .S;; accuracy given by
Sij — 85 =(CSij — MSi) — (STc — STm).  (A6)

In (A.6), thevalues of mean and standard deviation of C'S;; —
MS;; are first calculated. Since ST and ST, are at least
—20dB below S;; for all 16 scattering parameters, one can as-
sume the mean and standard deviation for S;; — S¢; are equal
to those for C'S;; — M S;;.

This assumption is then validated by expanding S7 and
STyy. Taking S14, for example, the difference between S14 —
S¢, and CS14 — M S14 can be expressed as

1
(CS14— MS14) — (514 — STy = F_(534513 — 5%.5%5)

° (A7)
whereT 3 isthe reflection coefficient of the 50-€2 |oad connected

at port 3. (1/T'3)534513 and (1/T'3)55,5¢, are the dominant

termsin S and STy, respectively. In(A.7), S34513— 55,57
can be rewritten as
534513 — 93,573 = Saap1 + S13p2 — p1p2 (A.8)

where p; = S13 — 575 and po = Ss4 — S5,. Since the mean
and variance of p; and p, are known, the mean and variance of
S34513 — 55,575 can then be calculated. The calculated results
show that the mean and variance differences between S;; — - S5
and CS;; — M S;; are quite small, as assumed. Results of the
estimated val ues of the mean and standard deviationfor S;; =S5
arelisted in Table 1.

Since the standard deviation gives the root mean square dis-
tance between Sfj and S;;, one can then use the mean value

of [Sfj[ and the calculated standard deviation to estimate the
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TABLE I
CALCULATED RESULTS OF MEAN ABSOLUTE VALUE |S;;|, ABSOLUTE
MEAN VALUE |4t|, STANDARD DEVIATION o, MAGNITUDE ERROR,
AND PHASE ERROR OF S;;

Sij Sn S Siz S
mean of | S| 0.369 0.229 0.066 0.346
M 0.12x107 0.52x10° 0.18x107 0.36x107
o 5.79x10° 2.20x10° 2.65x107 7.41x107
magnitude 0.135 0.083 0.344 0.184
error (dB)
phase error 0.899 0.550 2317 1.228
(degree)
Sy Sis Sa1 Sas Se
mean of | Sy | 0.629 0.629 0.339 0.064
1 0.22x10° 0.18x10° 0.13x107 0.08x107
o 3.67x107 4.88x107 3.42x10° 1.54x10°
error (dB)
phase error 0.334 0.444 0.577 1.365
(degree)

magnitude and phase errors. As the error vector is in the same
direction as S7;, it hasthe largest magnitude error. On the other
hand, asthe error vector isperpendicular to S}, it hasthe largest
phase error. With the value of S assumed to be equal to S;;,
the cal culated mean val ue of [Sfj , magnitude, and phase errors
arelisted in TableIl. Note only eight typical terms are given. It
showsthat all the magnitude and phase errors are approximately
less than 0.18 dB and 1.2°, except for S12 and S4o. The larger
errors of these two parameters may be due to their magnitudes
being significantly smaller than others.

D. Accuracy Comparison of Three PRMs

This section gives a comparison of the accuracy of type-l,
type-11 [15], and type-1Il PRMs in this paper. The accuracy of
reconstructed scattering parameters is expressed as the magni-
tude and phase errors. Since the errors are normalized to the

-8 = (1-1us)
0 1-I'352
0 0
det [R(k)} = ¢ x det
1-1% 15121—)1 k—1 0
| 1-TuSy 0

0 0 0
—(1—FQS§§>) 0 0
1-T,88 .. 0 0
0 (1 F;S:f'f 1)) 0

0 0 (1 rls“‘))
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TABLE Il
CALCULATED RESULTS OF MAGNITUDE AND PHASE ERRORS OF THE
RECONSTRUCTED SCATTERING PARAMETERS USING THREE PRMs

\9’;‘\ S S» Si2 Sz
mag. error 0.032 0.652 0.086 0.027
Type IPRM (dB)
phase error 0.212 4.46 0.579 0.178
(degree)
mag. error 0.047 0.223 0.067 0.028
Type I PRM (dB)
phase error 0309 1.489 0.441 0.183
(degree)
mag(-i Sr“’r 0.135 0.083 0.344 0.184
Type INPRM | (dB)
phase error
Pt 0.899 0.550 2317 1.228
\si_\ Sis Ss Sas Se
mag&}gﬂ"f 0.070 0.021 0.104 0.248
Type IPRM i (dB)
phase error 0.464 1.398 0.688 1.661
(degree)
mag&;rror 0.126 0.432 0.112 0.416
Type I PRM | (dB)
phase error 0.836 2.920 0.745 2.805
(degrec)
magdg"‘” 0.166 0.167 0.087 0.205
Type INPRM | __ (dB)
phase error 1.107 1.107 0.577 1.365
(degree)

mean valuesin type-111 PRMsor typical values of the respective
scattering parameters in type-l and type-1l PRMs, the compar-
ison can be made upon these numbers even when the DUTs are
not the same. Table 111 lists the results by adopting Table Il of
this paper and [15, Table I1].

As shown in Table I, Si1, So21, S13, and S3; of the type-1
PRM, Sis of type~|| PRM, and S22, So4, and Sy Of type~|||
PRM have the most accurate results. To explain these accuracy
characteristics, one may note that, for the reconstruction of a
four-port scattering matrix using a reduced-port vector network
analyzer, different numbers of measurement are performed in
these three PRMs.

From [15, Table 1], 13 two-port scattering matrices are
mesasured for the type-l PRM. Among them, nine matrices are
measured between ports 1-3, three are measured between ports
1 and 2, and one is measured between ports 2—4. For the type-I|
PRM, ten two-port scattering matrices are measured with six
matrices measured between ports 1-3, three measured between
ports 1 and 2, and one measured between ports 2-4. For the
type-11l PRM, all possible two-port connections are measured.
As shown in Table I, six two-port scattering matrices are
measured. One may observe that, for the scattering parameters
that are directly and frequently measured, they are given with
better accuracy. This also indicates that the type-lll PRM
has the smallest range of maximum and minimum values for
the magnitude and phase errors. As shown in Table 11, the
maximum and minimum values of the magnitude error for
type-l, type-l, and type-11l PRMs are given as (0.652,0.021),
(0.432,0.028), and (0.344, 0.083), respectively.
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